

Potential and Kinetic Energy Worksheet
OF 2
Kinetic Energy (KE) $=1 / 2$ mass times velocity squared

$$
K E=1 / 2 m v^{2}
$$

GRAVITATICNH:L
Potential Energy ( $\mathrm{RE}_{\mathrm{E}}$ ) = mass times the acceleration due to gravity times height
Eg

$$
\begin{gathered}
\mathrm{Eg}=\mathrm{mgh}=\mathrm{Fg})(\mathrm{h})^{\mathrm{Eg}}\left(\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
1 \text { Newton }(\mathrm{N})=1 \mathrm{~kg} * 1 \mathrm{~m} / \mathrm{s}^{2} \text { or } 1 \mathrm{kgm} / \mathrm{s}^{2}
\end{gathered}
$$


weight

1. You serve a volley ball with a mass of 2.1 kg . The ball leaves your hand at $30 \mathrm{~m} / \mathrm{s}$. The ball has $\qquad$ kinetic energy. Calculate it.
$G:$

$$
\begin{aligned}
& m=2.1 \mathrm{~kg} \\
& V=30 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& E: E_{K}=\frac{1}{2} m v^{2} \\
& S / S:\left(E_{K}\right)=\frac{1}{2}(2.1)(30)^{2}
\end{aligned}
$$

$U: E_{k}=$ ?

$$
E_{K}=945 \mathrm{~J}
$$

2. There is a bell at the top of a tower that is 45 m high. The bell weighs 190 N . The bell has gravitational potential energy. Calculate it.
$G:$

$$
\mathrm{Fg}_{\mathrm{g}}=190 \mathrm{~N}
$$

$$
\begin{gathered}
E: E g=m g h \\
E g=\left(\mathrm{Fg}_{\mathrm{g}}\right) \mathrm{h} \\
\mathrm{~S} / \mathrm{s}:(\mathrm{Eg})=(190)(45) \\
E g=850 \mathrm{~J}
\end{gathered}
$$

$U: E_{g}=$ ?
3. Thepotential energy of an apple is 6.0 joules. The apple is 3 m high. What is the mass of the apple?
$G: E g=6.0 \mathrm{~J}$

$$
\begin{aligned}
& E g=6.0 \mathrm{~J}=9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{~h}=3 \mathrm{~m} g
\end{aligned}
$$

$$
\begin{aligned}
E: E g & =m g h \\
\mathrm{~s} / \mathrm{s}:(6.0) & =(m)(9.8)(3) \\
m & =0.204 \mathrm{~kg}
\end{aligned}
$$

$$
h=3 \mathrm{~m} \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{~S} / \mathrm{s}:(6.0)=(\mathrm{m})(9.8)(3)
$$

$u: m=$ ?
4. What is the velocity of a 500 kg elevator that has 4000 J of energy?
$G:$

$$
\begin{aligned}
& m=500 \mathrm{~kg} \\
& E_{K}=4000 \mathrm{~J}
\end{aligned}
$$

$$
E: E_{K}=\frac{1}{2} m v^{2}
$$

s/s:

$$
(4000)=\frac{1}{2}(500)(v)^{2}
$$

$U: V=$ ?
4.

$$
4000=250 v^{2}
$$

$$
\begin{aligned}
16 & =v^{2} \\
\sqrt[3]{v^{2}} & =\sqrt{16} \\
v & =4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

5. What is the mass of an object that creates 33,750J of energy by traveling at

$$
\begin{array}{rlrl}
G: V=30 \mathrm{~m} / \mathrm{s} ? & E: E_{K} & =\frac{1}{2} m v^{2} \\
E_{K} & =33,750 \mathrm{~J} & s / \mathrm{s}:(3370) & =\frac{1}{2}(\mathrm{~m})(30)^{2} \\
U: m=? & 33750 & =4 \frac{450 \mathrm{~m}}{450} \\
& m & =75 \mathrm{~kg}
\end{array}
$$

6. Missy Diwater, the former platform diver for the Ringling Brothers' Circus had a kinetic energy of 15,000 just prior to f hitting the bucket of water. If Missy's mass is 50 kg , the what was her velocity?
$G:$

$$
E: E_{K}=\frac{1}{2} m v^{2}
$$

$$
\begin{aligned}
& v^{2}=600 \\
& \sqrt{v^{2}}=\sqrt{600} \\
& v=24.4949 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& v=20 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

7. A 75 kg refrigerator is located on the $70^{\text {th }}$ floor of a skyscraper $(300 \mathrm{~m}$ above ground). What is the potential energyof the refrigerator?
$G:$

$$
m=75 \mathrm{~kg}
$$

$$
\mathrm{h}=300 \mathrm{~m}
$$

$$
9=9.8 \mathrm{n} / 5
$$

$$
U: \text { Eg }
$$

$$
\begin{aligned}
E: E_{g} & =m g h \\
s / s\left(E_{g}\right) & =(75)(9.8)(300) \\
E_{g} & =220,500 \mathrm{~J}
\end{aligned}
$$

8. At what height is an object that has a mass of 50 kg , if its gravitational potential energy is 9800 J ?
9. A 10 kg mass is lifted to a height of 2 m . What is its potential energy at this position?
$G$

$$
\begin{gathered}
G: m=10 \mathrm{~kg} \\
h=2 m \\
g=9.8 \mathrm{~m} / \mathrm{s}^{2} \\
U: E g=?
\end{gathered}
$$

$$
\begin{aligned}
E: E_{g} & =m g h \\
S / S:\left(E_{g}\right) & =(10)(9.8)(2) \\
E_{g} & =196 \mathrm{~J}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
m=50 \mathrm{~kg} & (9800)=(50)(9.8)(h) \\
g=9.8 \mathrm{~m} / \mathrm{s}^{2} & 9800=
\end{array} \\
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& 9800=490 h \\
& \mathrm{U}: \mathrm{Ch}=\text { ? } \\
& h=20 \text { meters }
\end{aligned}
$$

$$
\begin{aligned}
& E x=15000 \\
& m=50 \mathrm{~kg} \\
& \text { Sos: } \\
& (15000)=\frac{1}{2}(50)(V)^{2} \\
& 15000=25 v^{2} \\
& 600=v^{2} \\
& 2 \\
& V=20 \mathrm{~m} / \mathrm{s} \\
& U: \quad V=\text { ? } \\
& V=24.4949 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

10. Calculate the kinetic $\overrightarrow{\text { energy of a truck that has a mass of } 2900 \mathrm{~kg} \text { and is }{ }^{\text {a }} \text {. }}$ moving at $55 \mathrm{~m} / \mathrm{s}$.
$G: V=55 \mathrm{~m} / \mathrm{s}$
$m=2900 \mathrm{~kg}$

$$
U: E_{K}
$$

$$
\begin{gathered}
E: E_{K}=\frac{1}{2} m v^{2} \\
S H:\left(E_{K}\right)=\frac{1}{2}(2900)(55)^{2} \\
E_{K}=4386250 \mathrm{~J}
\end{gathered}
$$

11. A bullet has a mass of 0.0042 kg . The muzzle velocity of the bullet coming out of the barrel of the rifle is $993 \mathrm{~m} / \mathrm{s}$. What is the KE of the bullet as it exits the gun barrel?
$G: m=0.0042 \mathrm{~kg}$

$$
V=993 \mathrm{~m} / \mathrm{s}
$$

$$
U: E_{K}=?
$$

$$
\begin{aligned}
E: E_{K} & =\frac{1}{2} m v^{2} \\
S / S:\left(E_{K}\right) & =\frac{1}{2}(.0042)(993)^{2}
\end{aligned}
$$

$$
E k=2070 \mathrm{~J}
$$

12. What is the potential energy of a 3 kg ball that is on the ground?
$E g=m g_{A}^{h}$ so $E g=0$ the gravitational potentid $h=0 \quad$ energy of anything on the ground.
13. A roller coaster is at the top of a 72 m hill and weighs 966 N . At thequp since $h$ the hill the coaster car has graintation polenta en energy. Calculate it. is $\phi$.
14. What is the kinetic energy of a 3 kg ball that is rolling $2 \mathrm{~m} / \mathrm{s}$ ?

$$
\begin{array}{rlrl}
G: m=3 \mathrm{~kg} & E: E_{K} & =\frac{1}{2} m r^{2} \\
V=2 \mathrm{~m} / \mathrm{s} & S / \mathrm{s}: E_{K} & =\frac{1}{2}(3)(2)^{2} \\
U: E_{K} & & E_{K}=6 \mathrm{~J}
\end{array}
$$

15. A baby carriage is rolling down a hill at $18 \mathrm{~m} / \mathrm{s}$. If the carriage has 90 J of kinetic energy, what is the mass of the carriage?

$$
\begin{array}{rlrl}
G: V=18 \mathrm{~m} / \mathrm{s} & E: E_{K} & =\frac{1}{2} m r^{2} \\
E_{K}=90 \mathrm{~J} & S / \mathrm{s}^{\prime}:(90) & =\frac{1}{2}(\mathrm{~m})(18)^{2} \\
U: m=? & & 90 & =162 \mathrm{~m} \\
& & m & =.556 \mathrm{~kg}
\end{array}
$$

